On the Degree of Polynomial Approximation in $E^{P}(D)$

Jan-Erik Andersson
Department of Mathematics, University of Göteborg, Göteborg, Sweden
Communicated by R. C. Buck
Received September 10, 1975

1. Introduction

Let D be a Jordan domain in \mathbb{C} with rectifiable boundary Γ. By definition

$$
f \in E^{p}(D) \quad \text { if and only if } \quad f \circ \varphi \cdot\left(\varphi^{\prime}\right)^{1 / p} \in H^{p}
$$

where φ is a Riemann mapping of the unit disc U onto D. We shall denote by $|\Gamma|$ the length of Γ.

Supplied with the norm

$$
\|f\|_{p}=\left((1 /|\Gamma|) \int_{\Gamma}|f(z)|^{p}|d z|\right)^{1 / p}
$$

$E^{p}(D)$ becomes a Banach space for $p \geqslant 1$. For further properties of $E^{p}(D)$ see, e.g., [3].

The degree of polynomial approximation in $E^{p}(D), p \geqslant 1$, has been studied by several authors. In [10] Walsh and Russell gave results when Γ is an analytic curve. Later these results were extended to more general domains, for $p>1$ by Al'per [1] and for $p=1$ by Andraško [2] and Galan [4]. However, no corners were allowed. In [7] Kokilašvili stated theorems for $p>1$ that also cover cases when D has corners. Similar results are given in [6].

The results in [7] rely on the boundedness of the operator $S: L^{p}(\Gamma) \rightarrow L^{p}(\Gamma)$ defined by

$$
S f(z)=\int_{\Gamma}(f(\zeta) /(\zeta-z)) d \zeta, \quad z \in \Gamma
$$

However, the boundedness is needed only for a certain subspace of $L^{p}(T)$. In this paper we shall give a method that enables us to include domains with corners in the case $p=1$. Since no proofs have been given in [7] we shall also include the case $p>1$.

2. Polynomial Expansion in $E^{p}(D)$

Let $\Psi: S^{2} \backslash U \rightarrow S^{2} \backslash D$ be the Riemann mapping with $a=\Psi^{\prime}(\infty)>0$. In the sequal let q be the conjugate exponent of p, i.e.,

$$
p^{-1}+q^{-1}=1
$$

For $k=0,1, \ldots$, and $R>1$ let

$$
F_{p, k}(z)=\frac{1}{2 \pi i} \int_{|w|=R} \frac{w^{k}\left[\Psi^{\prime}(w)\right]^{1 / q}}{\Psi(w)-z} d w, \quad z \in D
$$

Obviously $F_{p, k}$ is a polynomial of degree k. We shall refer to these polynomials as the p-Faber polynomials. To each $f \in E^{p}(D)$ we associate its p-Faber series

$$
f \sim \sum_{\mathbf{0}}^{\infty} a_{k} F_{p, k}
$$

where

$$
a_{k}=a_{k}(f)=(2 \pi i)^{-1} \int_{|w|-1} f \circ \Psi(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p} w^{-k-1} d w
$$

Series of this type were studied for $p>1$ by Kokilašvili.
Lemma 2.1. For $n=0,1, \ldots$, the p-Faber coefficients of $F_{p, n}$ are

$$
\begin{aligned}
a_{k i}\left(F_{p, n}\right) & =0 & & \text { for }
\end{aligned} \quad k \neq n
$$

Proof. With obvious modifications we can use the proof by Kövari and Pommerenke [8] of the corresponding lemma in the uniform case.

The lemma can be used to prove the following result that will be useful later.

Proposition 2.2. For every $f \in E^{p}(D), p \geqslant 1$, the Abel sum of its p-Faber series converges pointwise to f in D.

Proof. Let $R>1$. Then for $z \in D$

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{|w|=1} \frac{f \circ \Psi(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p} \cdot\left[\Psi^{\prime}(R w)\right]^{1 / q}}{\Psi(R w)-z} d w \\
& \quad=\sum_{0}^{\infty} R^{\sim k-1} F_{p, k}(z) \cdot(2 \pi i)^{-1} \int_{|w|=1} f \circ \Psi(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p} \cdot w^{-k-1} d w \\
& \quad=R^{-1} \sum_{0}^{\infty} R^{-k} a_{k} F_{p, k}(z)
\end{aligned}
$$

where a_{k} are the p-Faber coefficients of f. Since $\left[\Psi^{\prime}(1 / \cdot)\right]^{1 / q} \in H^{q}$ and Ψ^{Ψ} is continuous on $|w| \geqslant 1$ we get

$$
\begin{aligned}
& \lim _{R \rightarrow 1+} \frac{1}{2 \pi i} \int_{|w|=1} \frac{f \circ \Psi(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p} \cdot\left[\Psi^{\prime}(R w)\right]^{1 / q}}{\Psi(R w)-z} d w \\
& \quad=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=f(z)
\end{aligned}
$$

for each $z \in D$.

Corollary 1. No two different functions in $E^{p}(D)$ have the same p-Faber series.

Corollary 2. If a p-Faber series $\sum a_{k} F_{p, k}$ is Abel summable in $E^{p}(D)$, then its sum is the only function in $E^{p}(D)$ with these p-Faber coefficients.

Proof. That its sum has $\left(a_{k}\right)_{0}^{\infty}$ as p-Faber coefficients follows from Lemma 2.1. This completes the proof.

3. An Operator from H^{p} into $E^{p}(D)$

Let $\Pi_{n}(D)$ and Π_{n} denote the polynomials of degree not exceeding n, considered as subspaces of $E^{p}(D)$ and H^{p}, respectively. Further, we let $\Pi(D)$ and Π be the corresponding sets with no restrictions on the degrees.

From the previous section we see that for $p \geqslant 1$ we can define an operator $T_{p}: \Pi \rightarrow E^{p}(D)$ by

$$
\left(T_{p} P\right)(z)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{P(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p}}{\Psi(w)-z} d w
$$

for $z \in D$. For $p>1$ we can use generalizations of the M . Riesz inequality to more general domains (see [5]) to prove that T_{p} is bounded for a wide class of domains. These are the domains considered by Kokilašvili. This shows that the following definition is not empty for $p>1$.

Definition of Type A_{p}. Let $p \geqslant 1$. A Jordan domain D with rectifiable boundary is of type A_{p} if the operator T_{p} is bounded.

In Section 5 we shall give a sufficient condition for D to be of type A_{1}. This condition will also permit corners.

If D is of type A_{p} the linear operator T_{p} can be extended to the whole of H^{p}. In fact we have the following

Theorem 3.1. Let D be of type A_{p}. Then there exists a continuous linear operator

$$
T_{p}: H^{p} \rightarrow E^{p}(D)
$$

such that
(i) $T_{p}\left(w^{k}\right)=F_{p, k} \quad$ for $\quad k=0,1, \ldots$.
(ii) T_{p} is injective. If $p>1$ it is moreover surjective.

Proof. All that remains to prove is (ii). Let $g \in H^{p}$ with $T_{p} g=0$ have the representation

$$
g(w)=\sum_{0}^{\infty} a_{k} w^{k}
$$

Since $g_{r}=g(r) \rightarrow g$ in H^{p} as $r \rightarrow 1$ we get

$$
\lim _{r \rightarrow 1-} T_{p} g_{r}=T_{p} g=0
$$

But

$$
T_{p} g_{r}=\sum_{0}^{\infty} a_{k} r^{k} F_{p, k}
$$

and Lemma 2.1 imply

$$
a_{k c}=\lim _{r \rightarrow 1^{-}} a_{k k}\left(T_{p} g_{r}\right)=a_{k}\left(T_{p} g\right)=0
$$

for $k=0,1, \ldots$, where as before, $a_{k}\left(T_{p} g_{r}\right)$ is the corresponding p-Faber coefficient of $T_{p} g_{r}$. Hence $g=0$ and T_{p} is injective.

For $f \in E^{p}(D)$ and $|u|<1$ let

$$
\tilde{f}(u)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f_{\circ} \Psi(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p}}{w-u} d w
$$

This is the unique holomorphic function in U whose Taylor coefficients at the origin coincide with the p-Faber coefficients of f.

The first part of the proof shows that $g \sim \sum a_{k} w^{k}$ implies $T_{p} g \sim \sum a_{k} F_{p, k}$. Corollaries 1 and 2 of Proposition 2.2 then give $f \in T_{p}\left(H^{p}\right)$ if and only if $\tilde{f} \in H^{p}$ and that $T_{p}^{-1} f=\tilde{f}$. By the M. Riesz inequality $\tilde{f} \in H^{p}$ for all $f \in E^{p}(D)$ if $p>1$. Hence T_{p} is surjective in that case.

Remark. From the above it follows in fact that T_{p}^{-1} is continuous for any Jordan domain with rectifiable boundary in case $p>1$.

4. The Degree of Approximation

For $f \in E^{p}(D)$ let

$$
E_{p, n}(f)=\inf \left\{\|f-p\|: p \in \Pi_{n}(D)\right\}, \quad n=0,1, \ldots
$$

By Theorem 3.1 all estimates of the degree of approximation in H^{p} can be transferred to $E^{p}(D)$ if D is of type A_{p}. In case $p>1$ the estimates are in fact equivalent, by the remark after Theorem 3.1.

For $g \in H^{p}, p \geqslant 1$, and $h>0$ let

$$
\omega_{p}(g, h)=\sup \left\{\left\|g\left(\cdot e^{i x}\right)-g(\cdot)\right\|_{p}:|x|<h\right\}
$$

The H^{p}-version of Jackson's theorem states that

$$
E_{p, n}(g) \leqslant C \omega_{p}\left(g, n^{-1}\right)
$$

for $g \in H^{p}$ and $n=1,2, \ldots$. Using Theorem 3.1 and remembering the notation

$$
\left(T_{p}^{-1} f\right)(u)=\tilde{f}(u)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f \circ \Psi(w) \cdot\left[\Psi^{\prime}(w)\right]^{1 / p}}{w-u} d w
$$

for $f \in E^{p}(D)$ and $|u|<1$, the following result is therefore immediate.
Theorem 4.2. Let $p \geqslant 1$ and D be of type A_{p}. Then for $f \in E^{p}(D)$ and $n=1,2, \ldots$

$$
E_{p, n}(f) \leqslant\left\|T_{p}\right\| E_{p, n}(\tilde{f}) \leqslant C\left\|T_{p}\right\| \omega_{p}\left(\tilde{f}, n^{-1}\right)
$$

Remark 1. The remark after Theorem 3.1 yields the inequality

$$
E_{p, n}(\tilde{f}) \leqslant C_{p} E_{p, n}(f)
$$

for any Jordan domain with rectifiable boundary and $p>1$. From this, inverse theorems can easily be deduced.

Remark 2. In general \tilde{f} may be much smoother than $f \circ \Psi \cdot\left(\Psi^{\prime}\right)^{1 / p}$, which appears in the corresponding estimate in [7].

Remark 3. For $p=1$ the theorem is obviously of no value unless $\tilde{f} \in H^{1}$.
5. A Sufficient Condition for D to Be of Type A_{1}

For $p=1$ difficulties arise because of the failure of the M. Riesz inequality. Our starting point is the same as that of Pommerenke [9].

Let $\rho>1$. With $|u|=1$ fixed and $\lambda=(\rho+1) / 2$ we have

$$
\log \frac{\Psi(\tau)-\Psi(\lambda u)}{a \tau}=\frac{1}{\pi} \int_{|w|=1} \frac{\rho}{\tau-\rho w} \arg \left[\frac{\Psi(\rho w)-\Psi(\lambda u)}{a \rho w}\right] d w
$$

for $|\tau|>\rho$. Remember that $a=\Psi^{\prime}(\infty)$. We observe that, for a fixed ρ, it is possible to define the branches so that $\arg ((\Psi(\rho w)-\Psi(\lambda u)) / a \rho w)$ is locally continuously differentiable with respect to u along the circle $|u|=1$. We may then differentiate with respect to u inside the integral. Hence, we get

$$
\frac{\Psi^{\prime}(\lambda u)}{\Psi(\tau)-\Psi(\lambda u)}=\frac{1}{\pi} \int_{|w|=1} \frac{\rho}{\tau-w}\left(-\frac{1}{\lambda} \frac{\partial}{\partial u} \arg [\Psi(\rho w)-\Psi(\lambda u)]\right) d w . \text { (1) }
$$

This may serve as a motivation of the following theorem, which is the main result in this paper.

Theorem 5.1. A Jordan domain with rectifiable boundary is of type A_{1} if

$$
\liminf _{\rho \rightarrow 1+}\left\|\int_{|u|=1}|(\partial / \partial u)(\arg [\Psi(\rho w)-\Psi(\lambda u)])||d u|\right\|_{\infty}=C_{1}<\infty
$$

where $\|\cdot\|_{\infty}=$ ess $\sup _{|w|=1}|\cdot|$.
Proof. Let the domain D fulfill the conditions in the theorem. For $\rho>1$ we can define linear operators

$$
\tilde{T}^{\rho}: H^{1} \rightarrow L^{1} \text { (on the unit circle) }
$$

by

$$
\left(\widetilde{T}^{\circ} f\right)(u)=-\frac{1}{\pi \lambda} \int_{|w|=1} f(w) \frac{\partial}{\partial u}(\arg [\Psi(\rho w)-\Psi(\lambda u)]) d w
$$

By Fubini's theorem we get

$$
\left\|\widetilde{T}^{\triangleright} f\right\|_{1}<(1 / \pi)\left\|\int_{|u|=1}|(\partial / \partial u)(\arg [\Psi(\rho w)-\Psi(\lambda u)])||d u|\right\|_{\infty} \cdot\|f\|_{1}
$$

From the definition of the 1-Faber polynomials it follows that

$$
\frac{\Psi^{\prime}(\lambda u)}{\Psi(\tau)-\Psi(\lambda u)}=\sum_{0}^{\infty} \frac{F_{1, \varepsilon^{\circ}} \circ \Psi(\lambda u) \cdot \Psi^{\prime}(\lambda u)}{\tau^{k+1}}, \quad|\tau|>\lambda
$$

Moreover, (1) gives

$$
\frac{\Psi^{\prime}(\lambda u)}{\Psi(\tau)-\Psi(\lambda u)}=\widetilde{T}^{\rho}\left(\frac{\rho}{\tau-w}\right)(u)=\sum_{0}^{\infty}(\rho / \tau)^{k+1} \widetilde{T}^{p}\left(w^{k}\right)(u)
$$

for $|\tau|>\rho$. This implies

$$
\begin{equation*}
\widetilde{T}^{o}\left(w^{k}\right)(u)=\rho^{-k-1} \cdot F_{1, E} \circ \Psi(\lambda u) \cdot \Psi^{\prime}(\lambda u) \tag{2}
\end{equation*}
$$

for $k=0,1, \ldots$.
Since the right-hand side of (2) has a limit in L^{1} sense as $\rho \rightarrow 1+$, the limit

$$
\lim _{\rho \rightarrow 1+} \widetilde{T}^{\rho} P=\widetilde{T} P
$$

exists for all polynomials P. Furthermore we know that

$$
\liminf _{p \rightarrow 1+}\left\|\widetilde{T}^{\rho}\right\|=\mathbb{C}
$$

Consequently

$$
\|\tilde{T} P\|_{I} \leqslant C\left\|_{1} P\right\|_{I}
$$

for all polynomials P. Since moreover

$$
\tilde{T}\left(w^{k}\right)=F_{1,7_{c}} \circ \Psi \cdot \Psi^{\prime}
$$

we see that for all polynomials P

$$
\left(T_{1} P\right) \circ \Psi \cdot \Psi^{\prime}=\tilde{T} P
$$

Hence

$$
\left\|T_{1} P\right\|_{1} \leqslant C\|P\|_{1}
$$

and thus D is of type A_{1}.
Remark. Geometrically the condition in the theorem means that the variations of the directions of secants with one fixed endpoint have to be bounded by a constant, independent of these endpoints. If, for instance, the boundary is sufficiently smooth between a finite number of corners, the domain is obviously of type A_{1}.

References

1. S. JA. Al'PER, Approximation in the mean of analytic functions of class E^{p} (Russian), Issledovanija po sovremennym problemam teorii funkciì kompleksnogo peremennogo, Gos. Izdat. Fiz.-Mat. Lit., Moscow (1960), 273-286.
2. M. I. Andraško, On the approximation in the mean of analytic functions in regions with smooth boundaries (Russian), Voprosy Mat.-Fiz, i Teorii Funkcil, Izd-vo Akad. Nauk Ukrain. RSR, Kiev (1963), 3-11.
3. P. L. Duren, "Theory of H^{p}-spaces," Academic Press, New York/London, 1970.
4. D. M. Galan, Approximation in the mean of regular functions of class E^{1} in regions with smooth boundaries (Ukrainian), Dopovidì Akad. Nauk. Ukrain. RSR Ser. A (1967), 673-676.
5. I. C. Gohberg and N. JA. Krupnik, "Introduction to the Theory of One-Dimensional Singular Integral Operators" (Russian), Izdat. "Štiinca," Kišinev, 1973.
6. I. I. Ibragimov and D. Mamedhanov, Constructive characterization of some classes of functions (Russian), Dokl. Akad. Nauk SSSR 223 (1975), 35-37.
7. V. M. Kokilašvili, A direct theorem on mean approximation of analytic functions by polynomials, Dokl. Akad. Nauk SSSR. 185 (1969), 749-752; Soviet Math. Dokl. 10 (1969), 411-414.
8. T. Kövari and Ch. Pommerenke, On Faber polynomials and Faber expansions, Math. Z. 99 (1967), 193-206.
9. Сh. Pommerenke, Konforme Abbildung und Fekete-Punkte, Math. Z. 89 (1965), 422-438.
10. J. L. Walsh and H. G. Russell, Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions, Trans. Amer. Math. Soc. 92 (1959), 355-370.
